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3. Lattice Model of a Fluid 

Lattice Models   

Lattice models provide a minimalist, or coarse-grained, framework for describing the translational, 

rotational, and conformational degrees of freedom of molecules, and are particularly useful for 

problems in which entropy of mixing, configurational entropy, or excluded volume are key 

variables. The lattice forms a basis for enumerating different configurations of the system, or 

microstates. Each of these microstates may have a different energy, which is then used to calculate 

a partition function.  

 Q  eEi /kBT
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The thermodynamic quantities then emerge from 
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and other internal variables (X) can be statistically described from 
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We will typically work with a macroscopic volume broken into cells, 

typically of a molecular size, which we can fill with the fundamental 

building blocks in our problem (atoms, molecules, functional groups) 

subject to certain constraints. In this section we will concern ourselves 

with the mixing of rigid particles, i.e., translational degrees of freedom. 

More generally, lattice models can include translational, rotational, and 

conformational degrees of freedom of molecules. 
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Ideal Lattice Gas 

The description of a weakly interacting fluid, gas, solution, or mixture is dominated by the 

translational entropy or entropy of mixing. In this case, we are dealing with how molecules occupy 

a volume, which leads to a translational partition function. We begin by defining a lattice and the 

molecules that fill that lattice: 

  	 Parameters: 
Total volume: V 
Cell volume:   
Number of sites:  M = V/ 
Number of particles:  N   (N≤M) 
Number of contacts each cell has with adjacent cells: z 

	 	

We begin my assuming that all microstates (configurations of occupied sites in the volume) are 

equally probable, i.e., Ei = constant. This is the microcanonical ensemble, so the entropy of the 

fluid is given by Boltzmann’s equation 

 lnBS k    (2) 

where Ω is the number of microstates available to the system. If M is not equal to N, then the 

permutations for putting N indistinguishable particles into M sites is given by the binomial 

distribution: 
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Also, on cubic lattice, we have 6 contacts that each cell makes with its neighbors. The contact 

number is z, which will vary for 2D (z = 4) and 3D (z = 6) problems.  

How do we choose the size of v? It has to be considered on a case-by-case basis. The objective of 

these models is to treat the cell as the volume that a particle excludes to occupation by other 

particles. This need not correspond to an actual molecular dimension in the atomic sense. In the 

case of the traditional derivation of the translational partition function for an ideal gas, v is 

equivalent to the quantization volume  3/23 2 2 Bh mk T  . 

From Ω we can obtain the entropy of mixing from lnBS k   with the help of Sterling’s 

approximation ln( !) ln( )M M M M : 
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In the last line we introduced a particle fill factor  

Vacancies 
are indistinguishable 

Particles are indistinguishable 
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/x N M  

which quantifies the fraction of cells that are occupied by particles, and is also known as the mole 

fraction or the packing ratio. Since 1x  , the entropy of mixing is always positive. 

For the case of a dilute solution or gas, N M , and (1‒x) ≈ 1, so   

 
dilute ln lnBS N x or xk nR     

We can derive the ideal gas law /Bp VNk T  from this result by making use of the thermodynamic 

identity  
N

p T S V   . 
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Binary Fluid 

Entropy of Mixing 

The thermodynamics of the mixing process is important to phase equilibria, hydrophobicity, 

solubility, and related solvation problems. The process of mixing two pure substances A and B is 

shown below. We define the composition of the system through the number of A and B particles: 

NA and NB and the total number of particles N = NA + NB, which also equals the number of cells. 

We begin with two containers of the homogeneous pure fluids and mix them together, keeping the 

total number of cells constant. In the case of the pure fluids before mixing, all cells of the container 

are initially filled, so there is only one accessible microstate, Ωpure = 1, and  

S
pure

 k
B

ln1 0  

When the two containers are mixed, the number of possible microstates are given by the binomial 

distribution:   mix
 N ! N

A
!N

B
!. 
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If these particles have no interactions, each microstate is equally probable, and similar to eq. (4) 

we obtain the entropy of the mixture as 

 
  
Smix  NkB xA ln xA  xB ln xB    (5) 

For the mixture, we define the mole fractions for the two 

components: /A Ax N N  and /B Bx N N . As before, since Ax  

and 1Bx  , the entropy for the mixture is always positive. The 

entropy of mixing is then calculated from 

S
mix

 S
mix

 (S
pure A

 S
pure B

). Since the entropy of the pure 

substances in this model is zero, S
mix

 S
mix

. A plot of this 

function as a function of mole fractions illustrates that the 

maximum entropy mixture has xA = xB = 0.5.   
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Ideal systems—be they gasses, solutions, or any variety of molecular ensembles—are 

characterized by no interactions between particles. Under these conditions, the free energy of 

mixing is purely entropic with ΔAmix = ‒TΔSmix. 

Intermolecular Interactions 

To look at real (non-ideal) systems, we now add interactions between particles by assigning an 

interaction energy ω between two cells which are in contact. The interaction energy can be positive 

(destabilizing) or negative (favorable). 

 

With the addition of intermolecular interactions, each microstate will have a distinct energy, the 

canonical partition function can be obtained from eq. (1), and other thermodynamic properties 

follow.   

In the case of a mixture, we assign separate interaction energies for each adjoining A-A, B-B, or 

A-B pair in a given microstate: , ,AA BB AB   . How do we calculate the energy of a microstate? m 

is the total number of molecular contacts in the volume, and these can be divided into A-A, B-B, 

or A-B contacts: 

AA BB ABm m m m     

While m is constant, the counts of specific contacts mij vary by microstate. Then the energy of the 

mixture for the single ith microstate can be written as 

 E
mix

 m
AA


AA
 m

BB


BB
 m

AB


AB
 (6) 

and the internal energy comes from an ensemble average of this quantity. An exact calculation of 

the internal energy from the partition function would require a sum over all possible configurations 

with their individual contact numbers. Instead, we can use a simpler, approximate approach which 

uses a strategy that starts by expressing each term in eq. (6) in terms of mAB. We know: 

 
mAA  (Total contacts for A) (Contactsof A with B)


zN A

2


mAB

2

  (7) 
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Then we have  
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  (9) 

Here in the second step, we recognize that the first two terms are just the energy of the two pure 

liquids before mixing. These are calculated by taking the number of cells in the pure liquid (Ni) 

times the number of contacts per cell (z) and then divide by two, so you do not double count the 

contacts.  

 U
pure,i


z

ii
N

i

2
  (10) 

Equation (9) describes the energy of a microstate in terms of mAB. To simplify our calculation of 

Umix, we make a “mean field approximation,” which replaces mAB with its statistical averageۦ  mABۧ: 
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  (11) 

Then for the energy for the mixed state mix mixU E   , we obtain:  

 U
mix

U
pure A

U
pure B

 x
A
x

B
Nk

B
T

AB
  (12) 

Here we have introduced the unitless exchange parameter,  
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  (13) 

which measures the relative change of intermolecular interaction for one cell in the lattice 

switching from an A-A and B-B contact to 2 A-B contacts. This average change of interaction 

energies is expressed in units of kBT. Dividing by z gives the average interaction energy per 

contact.  

 0AB   → unfavorable A•B interaction 

 0AB   → favorable A•B interaction

 
We can now determine the change in internal energy on mixing:

  

 
U

mix
 U

mix
U

pure A
U

pure B 
 x

A
x

B
Nk

B
T

AB

  (14) 

Note ΔUmix as a function of composition has its maximum value for a mixture with xA=0.5.  

Note that in the mean field approximation, the canonical partition function is  
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We kept the internal molecular partition functions here for completeness, but for the simple 

particles in this model 1A Bq q  . 

Free Energy of Mixing1 

Using eqs. (5) and (14), we can now obtain the free energy of mixing:  
 

  

A
mix

 U
mix

TS
mix

 NkBT xAxBAB  xA ln xA  xB ln xB  

This function is plotted below as a function of mole fraction for different values of the exchange 

parameter. When there are no intermolecular interactions (χAB = 0), the mixing is spontaneous for 

any mole fraction and purely entropic. Any strongly favorable A-B interaction (χAB < 0) only 

serves to decrease the free energy further for all mole fractions. 

 

 

As χAB increases, we see the free energy for mixing rise, with the biggest changes for the 50/50 

mixture. To describe the consequences, let’s look at the curve for 3AB  , for which certain 

compositions are miscible (ΔAmix < 0) and others immiscible (ΔAmix > 0).   

Consider what would happen if we prepare a 50/50 mixture of this solution. The free energy of 

mixing is positive at the equilibrium composition of the xA = 0.5 homogeneous mixture, indicating 

that the two components are immiscible. However, there are other mixture compositions that do 

have a negative free energy of mixing. Under these conditions the solution can separate into two 

                                                 

1. J. H. Hildebrand and R. L. Scott, Regular Solutions. (Prentice-Hall, Englewood Cliffs, N.J., 1962). 
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phases in such a way that ΔAmix is minimized. 

This occurs at mole fractions of 

x
A
 0.07  &  0.93, which shows us that one 

phase will be characterized by A Bx x  and the 

other with A Bx x . If we prepare an unequal 

mixture with positive ΔAmix, for example xA = 

0.3, the system will still spontaneously phase 

separate although mass conservation will dictate 

that the total mass of the fraction with 

0.07Ax  will be greater than the mass of the 

fraction at 0.93Ax  . As 
AB

increases beyond 3, the mole fraction of the lesser component 

decreases as expected for the hydrophobic effect. Consider if A = water and B = oil. BB  and AB  

are small and negative, AA  is large and negative, and 1AB   . 

Critical Behavior 

Note that 50/50 mixtures with 2 2.8AB   have a negative free energy of mixing to create a 

single homogeneous phase, yet, the system can still lower the free energy further by phase 

separating. As seen in the figure, 2AB   marks a crossover from one phase mixtures to two 

phase mixtures, which is the signature of a critical point. We can find the conditions for phase 

equilibria by locating the free energy minima as a function of χAB, which leads to the phase 

diagrams as a function of χAB and T below. The critical temperature for crossover from one- to 

two-phase behavior is T0, and Δω is the average differential change in interaction energy defined 

in eq. (13). 
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